Browse Grants

By State By Year

Grant Detail

<< Previous | Next >>

TITLE Generation of inner ear sensory cells from human ES cells toward a cure for deafness ABSTRACT Hearing loss is the leading birth defect in the United States with ~3 children in 1,000 born with partial to profound compromise of auditory function. Debilitating hearing loss is estimated to affect ~4% of people under 45 years of age, and 34% of those 65 years or over. A major cause of why acquired hearing loss is permanent in mammals lies in the incapacity of the sensory epithelia of the inner ear to replace damaged mechanoreceptor cells, or hair cells. Sensory hair cells are mechanoreceptors that transduce fluid movements generated by sound into electrochemical signals interpretable by the brain. Degeneration and death of hair cells is causal in >80% of individuals with hearing loss In this grant application, we propose to explore, in comparative manner, the potential of at least five human ESC lines to develop into hair cells. We strive to use recently derived human embryonic stem cells for this purpose to avoid problems caused by potential chromosomal abnormalities and nonhuman or viral contaminants, which greatly restrict the use of these stem cells and render their derivatives unacceptable for in vivo studies. Federal funding cannot be used for research with these embryonic stem cell lines. The most exciting long-term goal of the proposed experimentation is to provide an abundant source of human inner ear progenitor cells that can be tapped in the future to routinely create human hair cells for in vitro and in vivo experiments and for clinical studies aimed to repair damaged ears. Having access to human hair cells in vitro offers, for the first time, the opportunity for detailed cell-biological studies of this cell type. We envision that human ESC-derived inner ear progenitor cells can be used to screen for drugs that lead to increased hair cell differentiation. Equally exiting with regard to possible clinical applications are studies aimed at differentiating functional human hair cells in vitro, in organ culture, and in vivo after transplantation of the cells into the cochleae of deaf animal models and potentially into human patients. In the more distant future, we envisage that our proposed research will result in novel treatment strategies to cure deafness and potentially other inner ear diseases such as tinnitus caused by malfunctioning sensory hair cells, and vestibular disorders.
PI Stefan Heller INSTITUTE Stanford University STATE California AMOUNT $2,469,370.00 AWARD DATE 2007 March GRANT TYPE Comprehensive