Database

Browse Grants

By State By Year

Grant Detail

<< Previous | Next >>

TITLE Human stem cell derived oligodendrocytes for treatment of stroke and MS ABSTRACT Strokes that affect the nerves cells, i.e., gray matter, consistently receive the most attention. However, the kind of strokes that affecting the wiring of the brain, i.e., white matter, cause nearly as much disability. The most severe disability is caused when the stroke is in the wiring (axons) that connect the brain and spinal cord; as many as 150,000 patients are disabled per year in the US from this type of stroke. Although oligodendrocytes (oligos) are the white matter cells that produce the lipid rich axonal insulator called myelin) are preferentially damaged during these events, stem cell-derived oligos have not been tested for their efficacy in preclinical (animal) trials. These same white matter tracts (located underneath the gray matter, called subcortical) are also the primary sites of injury in MS, where multifocal inflammatory attack is responsible for stripping the insulating myelin sheaths from axons resulting in axonal dysfunction and degeneration. Attempts to treat MS-like lesions in animals using undifferentiated stem cell transplants are promising, but most evidence suggests that these approaches work by changing the inflammation response (immunomodulation) rather than myelin regeneration. While immunomodulation is unlikely to be sufficient to treat the disease completely, MS may not be amenable to localized oligo transplantation since it is such a multifocal process. This has led to new emphasis on approaches designed to maximize the response of endogenous oligo precursors that may be able to regenerate myelin if stimulated. We hypothesize that by exploiting novel features of oligo
PI Samuel Pleasure INSTITUTE University of California, San Francisco STATE California AMOUNT $2,566,700.00 AWARD DATE 2007 March GRANT TYPE Comprehensive