Browse Grants

By State By Year

Grant Detail

<< Previous | Next >>

TITLE Spinal ischemic paraplegia: modulation by human embryonic stem cell implant. ABSTRACT Ischemia-induced paraplegia often combined with a qualitatively defined increase in muscle tone (i.e. spasticity and rigidity) is a serious complication associated with a temporary aortic cross-clamping ( a surgical procedure to repair an aortic aneurysm). In addition to spinal ischemic injury-induced spasticity and rigidity a significant population of patients with traumatic spinal injury develop a comparable qualitative deficit i.e. debilitating muscle spasticity. At present there are no effective treatment which would lead to a permanent amelioration of spasticity and rigidity and corresponding improvement in ambulatory function. In recent studies, by using rat model of spinal ischemic injury we have demonstrated that spinal transplantation of rat or human neurons leads to a clinically relevant improvement in motor function and correlates with a long term survival and maturation of grafted cells. More recently we have demonstrated a comparable maturation of human spinal precursors grafted spinally in immunosupressed minipig. In the proposed set of experiments we wish to characterize a therapeutical potential of human blastocyst-derived neuronal precursors when grafted into previously ischemia- injured rat or minipig spinal cord. Defining the potency of spinally grafted hESC-derived neuronal precursors in two in vivo models of spinal ischemic injury serves to delineate the differences and/or uniformity in the cell maturation when cells are transplanted in 2 different animals species and can provide an important data set for future implications of such a therapies in human patients.
PI Martin Marsala INSTITUTE University of California, San Diego STATE California AMOUNT $2,445,720.00 AWARD DATE 2007 March GRANT TYPE Comprehensive